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Abstract
Smoothing of the fractal rough surface of Nd2O3 doped CeO2 ceramic under sintering has been
observed in an ultra-small angle x-ray scattering investigation. The surface fractal dimension of
2.6 for the non-sintered specimen reduces with sintering temperature and gradually attains a
value of 2.0, which corresponds to a smooth surface, at a high enough sintering temperature. A
Monte Carlo based computer simulation has been attempted to explain the smoothing of such a
fractally rough surface due to the diffusion based surface transport of the materials from a
region of positive curvature to one of negative curvature. The variation of the interface width
and the evolution of the fractal dimension with sintering have been estimated from this model
simulation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In many natural and synthetic objects, the structures manifest
in such a way that it asks for the introduction of a new
dimension, which is different from its normal Euclidean
dimension, for mathematical description and quantification of
its structures. Since Benoı̂t Mandelbrot first brought the idea
of fractals [1] to the attention of the world, self-similarity/self-
affinity has wormed its way into the various branches of
sciences as well as in psychology and even abstract arts. Many
naturally occurring materials like rocks [2, 3], coals [4, 5],
cauliflowers, some special coastlines etc are some examples of
such natural fractal objects. Synthesized objects like hydrated
cement pastes [6, 7], surfaces prepared by molecular beam
epitaxy etc. also are known to be fractal in nature and the
fractal nature depends strongly on their synthesis route. An
object which is fractal over a wide length scale can be either
mass fractal [8] or surface fractal [8] in nature. For a mass

fractal object, the mass or the volume is proportional to rdm ,
where dm is known as the mass fractal dimension, which is less
than 3. For a surface fractal object, the self-similarity or the
self-affinity exists only on the surface of the object. In this
case the surface area scales with rds , where ds is known as
the surface fractal dimension. The value of ds is more than
2 but less than 3. It is noteworthy that for a smooth surface the
surface area scales with r 2. A mass fractal object, by default,
is also a surface fractal, but a surface fractal object need not be
a mass fractal object.

Nanocrystalline materials, which have gained tremendous
attention in basic sciences as well as in technology in the last
decade, often form agglomerates because of their very small
size. Often such agglomerates, vis-à-vis the surface rough-
ness of these nanocrystalline materials, can be viewed as self-
similar or self-affine fractal structures. The fractal dimension
(df) defines the quantitative measure of such fractal agglomer-
ates, which is different from the normal Euclidean dimension.
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The microstructural evolution of such nanocrystalline
ceramics under sintering is a crucial aspect as far as their
various potential applications are concerned. Fine powders
offer sintering at relatively low temperature. In general, in
the sintering process, the densification occurs via the path
where the surface energy is reduced by the elimination of
the solid–pore interfaces. The reduction of the free energy
is effected by the movement of the materials from the region
with higher radius of curvature to that with the lower radius of
curvature causing densification. The sintering behaviour of the
powders, where the basic particles under sintering are free from
agglomeration, has been studied extensively in the past and
well understood [9]. But for the nanocrystalline powders the
agglomerate being soft or hard affects the sintering behaviour.
In addition the sintered microstructure depends on the nature of
the agglomerates. In many cases, because of the agglomerated
nature of the initial powders, the surface of the particles does
not remain exactly smooth; a roughness comes into the picture.
The surface microstructure and the agglomeration behaviour
change with the advancement of the sintering process and
mainly depend on the sintering temperature/time.

Small angle x-ray scattering (SAXS) [10, 11] is an
indispensable technique for probing such self-similar or
self-affine density fluctuations in materials in a statistically
averaged way [10, 11] on mesoscopic length scales. It is a
speciality of small angle scattering that it can differentiate [12]
between the mass fractal and the surface fractal nature.
Monte Carlo based computer simulation may be performed
to understand the nature of the evolution of the density
fluctuations on the surface of a fractal object on the basis of
the SAXS results.

Doped ceria is an important material [13, 14] in view of its
potential applications [15] as a solid electrolyte for use in oxy-
gen concentration cells and in solid oxide fuel cells. The high
ionic conductivity coupled with the low activation energy for
ionic conduction makes doped ceria an attractive material for
use at temperatures below 800 ◦C, which would allow greater
flexibility in design of electrodes and inter-connectors [13].
Doped ceria is also a potential candidate for controlling the air
to fuel ratio in automobile exhausts [16]. Addition of trivalent
Nd3+ increases the ionic conductivity of ceria.

In the present paper we have investigated, using ultra-
small angle x-ray scattering (USAXS) [17], the evolution of
the density fluctuations on the mesoscopic length scale in
Ce0.50Nd0.50O1.75 [14] under sintering. An attempt has been
made to understand the USAXS results by performing a Monte
Carlo based simulation.

2. Experimental details

2.1. Sample

AR grade cerium nitrate [Ce(NO3)3·6H2O], Nd2O3, and
glycine (NH2CH2COOH) were used as the starting reagents.
The detail of the sample preparation technique through the
precursor and auto-ignition route has already been described
in an earlier paper [14]. The further heat treatment
of the Ce0.50Nd0.50O1.75 powder was carried out at three
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Figure 1. (a) USAXS profiles on a double-logarithmic scale.
(b) USAXS profiles in a Porod plot (I (q)q4 versus q). The solid line
in the high q region is a guide to the eye to show the change in the
Porod slope at high q with sintering temperature.

temperatures, namely, 800, 1000 and 1200 ◦C, successively.
For the USAXS experiments the thin layer powder specimens
was prepared on a Kapton tape.

2.2. USAXS experiment

USAXS experiments were carried out using a triple-bounce
channel cut crystal based USAXS instrument mounted on a ro-
tating anode source [18] at the Laboratoire Interdisciplinaire
sur l’Organization Nanométrique et Supramoléculaire (LI-
ONS), at the CEA, Saclay, France. The instrument consists of a
non-dispersive (1,−1) setting of 111 reflections from germa-
nium single crystal with the specimen between the two crys-
tals. The scattered intensities were recorded as a function of
the wavevector transfer q [=4π sin(θ)/λ, where 2θ is the scat-
tering angle and λ (=0.154 nm) is the incident x-ray wave-
length of the Cu Kα radiation]. The measured USAXS profiles
have been corrected for background, transmission and instru-
ment resolution effects [19]. Figure 1(a) shows the USAXS
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profiles on double-logarithmic scales and figure 1(b) depicts
the same profiles in a Porod plot (I (q)q4 versus q) in order to
show clearly the variation in slope of the different profiles at
higher q .

3. USAXS data analysis

From figure 1(a) it is discernible that the profile for the non-
sintered sample shows a straight line behaviour in a log–log
plot (i.e., a power law relationship with q). In addition, there
is a slight change in slope at around q ∼ 0.1 nm−1 where a
small hump appears [20]. From figure 1(b) it is evident that
the slope of the profile is not equal to 4 for any part of the
q range. The exponent of the power law for q > 0.1 nm−1

is ∼3.4 for the non-sintered sample. It is also evident from
figure 1(a) that the high q part of the profile is significantly
affected by sintering, particularly the value of the slope in the
higher q region. With increase in temperature of the sintering,
the value of the slope at higher q tends to ∼4 and the hump
at ∼0.1 nm−1 disappears. The above observations, along with
that of the nature of the high q region, guide us to analyse the
data in terms of the fractal model. It is noteworthy that due to
the power law correlation in the fractal systems in real space,
the SAXS profile also manifests a power law in q [12, 21].
The exponent of that power law is a non-integer and depends
on the nature of the fractal. For a mass fractal object, the SAXS
intensity I (q) follows q−α behaviour for the relatively high q
region with respect to the inverse of the upper fractal cut-off. In
this case the mass fractal dimension (dm) is equal to the value
of α. However, in such a case α � 3. For a surface fractal
object 4 � α � 3 and in this case the surface fractal dimension
(ds) is equal to the value of 6−α and lies between 2 and 3. For
an ideally smooth surface (ds = 2.0), I (q) obeys the Porod
law in the high q region, i.e., I (q) follows a q−4 behaviour.

For the non-sintered sample, the negative exponent of the
power law (for 1 nm−1 > q > 0.1 nm−1) is estimated to
be nearly 3.4. This hints that the surface of the agglomerated
particles may be viewed as a fractal surface. Here it is worthy
of mention that mathematical fractals like the Sierpinski
gasket [22] are exactly self-similar. However, most real
fractal objects observed in natural or in synthesized materials
are not exactly self-similar but self-affine in nature, which
means that these are fractals in some statistical sense and
the scaling parameter is not truly isotropic but imposes some
directional dependence. As the small angle scattering study
gives statistically averaged information, the data from real self-
affine objects can be modelled in terms of fractals in order to
quantify the structure. It is observed from figure 1(b) that the
negative exponent of the power law gradually reaches 4 with
sintering at increasing temperatures, indicating a smoothing of
the surface roughness of the particles. For the non-sintered
samples, the intensity also increases below the hump at around
0.1 nm−1. The total intensity profile I (q) for the samples has
been modelled as follows:

I (q) = Csq
−1(1 + q2ξ 2

s )(
ds−5

2 ) sin((ds − 1) tan−1(qξs))

+ Ca

(1 + q2ξ 2
a )n

(1)
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Figure 2. The fit of the model curve to the USAXS data.

Table 1. The parameters obtained from the fit of the model to the
USAXS data.

Sample ds ξs (nm) ξa (nm) N Ca/Cs

Non-sintered 2.60 17 250 2 5.5 × 105

800 ◦C 2.40 17 250 2 2.9 × 105

1000 ◦C 2.02 49 250 2 9.0 × 104

1200 ◦C 2.00 220 — — —

where the first term corresponds to the scattering from the
fractal surface [23] and the second term is the Debye–Büche
term [24, 25] present to account for the increase below the
hump. Such an increase is due to the agglomerated volume
at relatively large length scale. Shah et al [25] have used the
Debye–Büche function to interpret their data on dense highly
polydisperse fractal aggregates. Cs and Ca are the scale factors
and ξs is the upper cut-off of the surface fractal nature. The
scale factors are q independent but depend on the contrast as
well as on the number density of the particles. The parameters
estimated from the non-linear least squares fitting of the model
to the data are tabulated in table 1. The fit of the model to the
data is shown in figure 2. For the sample sintered at the highest
temperature (1200 ◦C), the first term alone is able to describe
the whole profile (which follows a Porod behaviour (q−4) at
high q) and in this case the surface becomes smooth in nature,
i.e., ds becomes 2.

It is obvious from the table that the value of the surface
fractal dimension (ds) gradually tends to 2 with increase in
sintering temperature and the final result is a smooth surface,
starting from a fractally rough surface.

4. Monte Carlo based computer simulation and
discussions

The Monte Carlo method provides a platform for simulating
various stochastic processes in materials science. The area of
fractals has also been enriched, in the last two decades, by
applying this technique. The self-similarity and fractal nature
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of a roughening interface has been studied using the two-
dimensional Monte Carlo technique [26] by Mon et al. Scaling
of rough surfaces under surface diffusion has been investigated
using a random deposition model in two dimensions [27].
Monte Carlo simulation has also been applied to predict a
high fractal dimension and surface roughening for sedimentary
rocks [28, 29]. Very recently a stochastic simulation model has
been applied to model the three-dimensional morphology of
nanoscaled aggregates formed by concurrent coagulation and
sintering [30].

In the present paper, to understand the USAXS results, i.e.,
the smoothing of the fractal surface under sintering, a Monte
Carlo based simulation has been attempted. The basic steps of
the simulations are the following.

(a) Initially, a self-affine fractal surface with a particular
surface fractal dimension is generated using a Fourier
filtering based spectral synthesis method [31].

(b) Once the fractal surface is generated, the effect of
sintering under different temperature conditions is studied
by modifying the surface according to the movement of
materials via a diffusion mechanism.

The algorithm followed in the present case is as follows.
Let h(x, y) define the height of any randomly chosen point

P(x, y) on the fractal surface. First it is checked whether
the point P has a positive curvature. Then another point
P ′(x ′, y ′) on the surface is chosen randomly. If the point
P1 (at height (h′(x ′, y ′)) has a negative curvature, then the
curvature difference �γ (i.e., the difference between the height
of P and the average height of all the nearest neighbours)
and the height difference �h are calculated. If the activation
energy is �E at temperature T , then the diffusion coefficient
is proportional to exp(−�E/kBT ). As the probability (	)

of material movement from one site to another will depend
on the activation energy due to the curvature difference, the
probability of material movement is exp(−�γ/T1), where
T1 is a factor which is proportional to the temperature T .
Depending on the above probability, the mass transfer takes
place during sintering, i.e., the height of the point P(x, y) is
modified to h(x, y) + 	 × (�h/2) and that for P ′(x ′, y ′) is
modified to h′(x ′, y ′)+	×(�h/2). The average width (W =
[
√∑ [h(x, y) − h̄]2/(N2)], where h̄ is the average height and

N × N is the system size) of the surface is calculated at each
iteration. The value of W starts decreasing sharply initially
and decreases slowly after a reasonably large time step when
the surface is nearly equilibrated at a particular temperature.
The long time width (W ) of the surface is noted for various
T1 values. The equilibrated surface has been registered. The
spectral densities (S(k), k in Fourier space) of the surfaces
at various T1 values are calculated. The modifications in
the fractal nature of the initial surface are noted by plotting
log(S(k)) versus log(k) for different values of k. If fractal
correlation exists in the structure, the curve log(S(k)) versus
log(k) can be fitted to a straight line and the slope of that line,
the fractal dimension, can be estimated [31] from the slope.
Here it should be mentioned that in reality mass transfer from
one site to another distant site could occur via the nearest
neighbours only. However, in the simulation process this
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Figure 3. The initial self-affine fractal surface simulated using the
spectral synthesis method for a fractal dimension 2.6.
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Figure 4. log(S(k)) versus log(k) for the initial fractal surface with
fractal dimension 2.6.

corresponds to a huge number of Monte Carlo steps vis-à-vis
an enormously large computation time. However, as we are
currently interested only in the effect of sintering temperature
for large sintering time, the mass transfer from one source
site to another distant target site, not a nearest neighbour site,
was also allowed, keeping the number of Monte Carlo steps
constant for all temperatures. In fact, this corresponds to the
sintering phenomenon at various temperatures for a particular
sintering time. It is worth mentioning that Fereydoon Family
et al have shown that the final simulation results for the random
filling model with surface diffusion in a square lattice are
independent of whether the transport is to nearest sites or to
sites that are not nearest neighbour sites.

On the basis of the Fourier filtering spectral analysis
method, an initial self-affine surface (200 × 200 system size)
having a fractal dimension of 2.6 has been generated and is
shown in figure 3.

The left part of figure 3 shows the surface (as a surface
plot) and the right part shows the contour of the same
surface. The verification of the fractal nature (with fractal
dimension 2.6) is done by calculating the linear form of the
log(S(k)) versus log(k) curve as shown in figure 4. At this
point, it should be mentioned that the spectral density (S(k))

for self-similar objects exactly follows a power law, i.e., an
exact straight line behaviour in a log(S(k)) versus log(k) plot.
However, for a self-affine surface log(S(k)) versus log(k)
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Figure 5. The surfaces for increasing T1 values are depicted. It is evident that the surface becomes smoother with an increase in T1.

follows a straight line behaviour but with statistical fluctuations
around the line. However, the fluctuations increase more and
more as the surface deviates from self-affine nature towards a
non-fractal surface.

The contours of the surface at various T1 (T1 ∝
temperature) values are plotted in figure 5. It is evident from
the figure that the surface roughness is reduced gradually as
T1 is increased and at high enough temperature the surface
roughness is almost absent.

The variation of the surface width (W ) and the calculated
fractal dimension of the sintered surface with varying T1 values
are plotted in figure 6. It is seen that the value of W decreases
gradually with temperature. The fractal dimension decreases
more sharply than the width.

Figure 7 shows the spectral density plots of the surface
at different T1 values. It is seen that as the temperature is
increased the fluctuations in log(S(k)) versus log(k) are also
increased indicating more and more deviation from self-affinity
and also the absence of fractal correlation on the surface.

The corresponding fractal dimension (ds), calculated from
the slope of the log(S(k)) versus log(k) plots, is plotted also in
figure 6. It is seen that the value of ds decreases from 2.6 to
a value of 2.0 (representing a smooth surface) with increase
in the temperature. As the fluctuation in the log(s(k)) versus
log(k) plot increases with increase in the value of T1, the error
bars are shown for the estimated fractal dimension.

The simulated fractal dimension and the experimentally
observed fractal dimension are compared in figure 8 on
a dimensionless reduced temperature (T/Tinitial) scale. It
is observed that in both cases the fractal dimension starts
decreasing from the initial value of 2.6 and reaches the
Euclidean dimension for the surface, i.e., 2.0. However, it is
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Figure 6. The reduction of the surface width and the decrease of the
fractal dimension with an increase in T1 are depicted. The initial
fractal dimension of 2.6 reaches the value of ∼2.0 at a high enough
value of T1.

also observed that the fractal dimension is reduced somewhat
more sharply in the case of experiment compared to that for
the simulation. This has been attributed to the following two
points:

(i) For the present samples, the grains are on the nanometric
scale. As the available specific surface area is more than
for the bulk grains, the rate of diffusion is expected to be
somewhat faster, which leads to faster sintering vis-à-vis
faster reduction in the fractal dimension.
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Figure 7. The spectral density of the evolving surface during sintering.

(ii) At relatively high sintering temperature there is always
a finite and significant probability of mass diffusion in
addition to the surface diffusion. The combination of
diffusion processes results in an increase of the effective
sintering rate. However, as the consideration of the
mass transport (in three dimensions) in the whole grains
makes the computation much more complex and also
enormously time-consuming, for the present paper we
restricted consideration to just the surface diffusion.

At this juncture, it is pertinent to discuss the nature of the
transition of the fractal dimensionality that takes place during
the sintering simulation. Normally, for a non-equilibrium
system, in particular for pattern formation in growth processes,
the transition in the pattern may either be gradual or be
associated with some dynamical phase transition [32]. For
example, in the case of fluid invasion in porous media [32–34],
a dynamical phase transition associated with changes in
local growth modes in a model porous medium has been
predicted [32] by Cieplak et al. In this study it has been
shown that below a critical contact angle, between the fluid
and the pore interface, the fluid advancement pattern is smooth,
while above the critical contact angle the pattern corresponds
to a fractal one. In such a case, the local growth mode is
governed by different instabilities and corresponding growth
mechanisms, like ‘burst’, ‘touch’ and ‘overlap’ between
neighbouring interfaces. However, in our present simulation
it is observed that the transition in the fractal dimensionality
remains gradual with respect to the time at a particular sintering
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Figure 8. Variation of the fractal dimension with reduced sintering
temperature.

temperature. The occurrence of such a gradual transition,
vis-à-vis the absence of a dynamical phase transition of the
fractal dimensionality, may be attributed as due to the nature
of mass transport from one site to another solely via diffusion
throughout the sintering process.

5. Conclusions

A USAXS study revealed that the fractal correlation for the
rough surfaces of non-sintered grains of Nd2O3 doped CeO2

6



J. Phys.: Condens. Matter 20 (2008) 035103 D Sen et al

is diminished under sintering. A relatively high surface
fractal dimension (∼2.6) in the non-sintered ceramic gradually
reduces to the normal Euclidean surface dimension of 2.0
at high enough sintering temperature. The Monte Carlo
based computer simulation established that such smoothing
of fractal rough surfaces under sintering is possible due to
the diffusion transport of materials from regions of higher
curvature to regions of lower curvature. As the fractally rough
surface, being in a metastable state, ‘tries’ to minimize its
surface energy during sintering, a smooth surface is gradually
developed with increase in the sintering temperature. The
reduction in the roughness from the USAXS experiment
follows a relatively sharp trend compared to that for the
simulation. This difference has been attributed as due to
the faster sintering in nanoceramics due to the availability of
larger specific surface area as compared to the bulk case and
also due to the additional mass diffusion transport mechanism
over and above the surface diffusion mechanism. Although
the present simulation deals only with surface diffusion based
mass transport, in the next step in the near future, consideration
of the mass diffusion in a three-dimensional network, in
addition to the surface diffusion, will be attempted within
the computational limitations. In addition, more experimental
investigations on the effect of sintering temperature and time
on the various fractal systems are called for.
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